
Security discussion of the Heroku platform

Charlie Egan

1 Introduction

This report covers the company Heroku in detail from a
risk and security standpoint. Heroku offer a web appli-
cation hosting platform-as-a-service with support for a
range of languages. In 2010 the company became Sales-
force subsidiary.

Their service for hosting web applications has a strong
usability focus and is marketed at developers, not op-
erations professionals. The service allows users to de-
ploy their code to a publicly visible subdomain for free.
Heroku makes scaling applications easier by providing a
web interface to adjust allocated resources. A library of
add-ons enables users to extend their applications util-
ising 3rd party services not included by default. These
are the main selling points of the platform. For a single
team to architect such a flexible system is, operationally,
very challenging. Heroku is often seen as a cost effective
alternative. [10]

The company employs a freemium business model. Users
can deploy free applications, but as their application
scales they incur expenses. Computing resources are pro-
rated to the second, premium add-ons such as Elastic-
search have a fixed monthly fee. Applications on the free
tier can only be active for 18 hours daily and sleep after
30 minutes of inactivity. They are also limited to 10,000
rows in the included database. Heroku abstract comput-
ing resources using Dynos, these are portable containers
that can be hosted anywhere on the platform to run a
user’s process.

Users of the platform are predominantly developers rang-
ing from learners working on side projects to startup
teams. While the platform is also commonly used
for ‘throw-away’ staging environments it also hosts 17
Quantcast top 10k websites [4] and a wide range of high
profile startups such as the automation platform IFTTT
and Product Hunt [14].

Security at Heroku is handled by a dedicated team, they
also employ a Chief Information Security Officer (CISO)

[28]. Their CISO is responsible for “application security,
security operations, compliance, and external security re-
lations” [7]. The current Director of Platform Security
is Jacob Kaplan-Moss [5]. Contact information to report
vulnerabilities is made clear in their security policy [31].
The company also publishes a “Security Researcher Hall
of Fame” list [27].

Heroku must comply with local data protection laws in
all regions in which they offer services. Their data pro-
tection procedures for deletion and physical security are
detailed in Salesforce documentation [50]. In the UK,
Heroku are liable to pay compensation to any individu-
als that suffer from the result of Heroku’s non-compliance
[47]. Heroku must also comply with The Payment Card
Industry Data Security Standard (PCI DSS), their in-
frastructure provider is PCI compliant, Heroku also use
the compliant third party payment processor Braintree
for taking their own payments [25].

This report is an in-depth analysis and discussion of
both the Heroku website and connected platform from
a security perspective. Security related properties of the
system will be detailed and related vulnerabilities high-
lighted and commented on.

Heroku is a highly connected service. The platform runs
on Amazon’s infrastructure as a service, AWS - this re-
port will not cover this outside of its relationship with
Heroku. Customer applications running on the platform
are also at risk from security vulnerabilities. This report
will only discuss such applications, and any related add-
ons, where they interact with the platform - potential
vulnerabilities of these applications is only mentioned in
passing.

1

2 Discussion

2.1 Asset & System
Identification

2.1.1 System Architecture

The following description summarises the publicly avail-
able information on the platform’s architecture and ac-
companies Figure 2 on page 10.

The first points of contact are a series of DNS servers
which route user application subdomains and custom do-
mains to nginx proxies.

Connections made to the proxies, retrieved from the DNS
lookup, are routed to a Varnish HTTP cache layer [44].
In the default event of a cache miss, the request is for-
warded to the Routing Mesh [20]. This is a custom Er-
lang component of the platform [44] and is responsible
for forwarding requests to the correct application server
(Dyno) [21].

Dynos are the company’s unit of computation and sand
boxing implementation. They are hosted on the Dyno
Grid [49]. This is an array of ‘Railgun’ server instances,
each hosting around 60 Dynos and deployed to an AWS
EC2 instance.

Dynos are built and deployed to a Railgun instance after
a git push is completed. Repositories trigger pre-receive
hooks to initiate the deployment process when users push
[29]. Next the application code is ‘compiled’ into a slug
using commands defined in an open source ‘buildpack’
[13]. The result is a SquashFS, read-only slug that can
be used to provision the application’s Dynos [16]. Add-
ons and databases are also provisioned on Dynos and au-
tomatically backed up to the AWS Elastic Block Store.
[26]

While this represents the core functionality, there are ad-
ditional undocumented services that administer the plat-
form. These will consist of a web application that hosts
the heroku.com and implements the features of the user
dashboard. This application needs make changes to the
platform as well as a customer database. It is also likely
connected to a number of other internal services for an-
alytics and logging.

2.1.2 Asset Identification

The Heroku business model is built on the following
classes of information assets.

The git server that users push code to during deployment
is one of the more sensitive on the platform. Eight lan-
guages are supported and, when deploying, users must
upload their code in full - even for compiled languages
(Go) when a binary could be compiled elsewhere. [18].
This git server contains the business logic and algorithms
of every customer. Representing a large repository of
company secrets, makes this a particularly sensitive as-
set. The system is also highly critical, during downtime
users would be unable to redeploy applications to fix bugs
and release updates. This service has been interrupted
for 85 minutes this year to date [22] [23]. To ensure con-
fidentiality, users communicate using ssh with an RSA
or DSA key [12], each user on the platform is only given
access rights to the git remotes associated with their ap-
plications.

Application Dynos also contain source code and addi-
tionally environment variables to connect with additional
services such as databases, banking software or social
media accounts. A Dyno could also be a database sup-
porting an application - in this case it might include pri-
vate communications, cached bank details or information
that may enable an attacker to infiltrate accounts else-
where. Dyno downtime also effects their production up-
time statistic, so both confidentiality and availability are
critical. Heroku publish uptime statistics [19] as well as
a comprehensive incident report [17]. Downtime preven-
tion is discussed in the Countermeasures section.

The DNS servers and the records they store are also
highly critical, while the information is public, it is im-
portant that it not be altered by an unauthorised party.
This would allow traffic to be routed to a fraudulent ap-
plication. The integrity of the information this service
provides is paramount and can only be altered by a user
over ssh or HTTPS.

Finally, there are Heroku’s own datastores which store
customer, billing and application data. This informa-
tion, and its backups, are critical as they enable recov-
ery after a service outage. Customer banking details are
highly sensitive and the availability of application infor-
mation is critical to the functioning of the platform. In a
2010 press release [51], Heroku announced they are using
Splunk as a monitoring solution to track and maintain
integrity in these core systems.

2

2.2 Risk Identification

2.2.1 Threat Analysis

Threats with the highest impact on Heroku’s system are
predominantly from human agents exploiting human vul-
nerabilities. Being built on AWS means means that some
physical security risks are transferred. Customers also
take responsibility for their own application security -
though the platform offers a good baseline [24]. Unpre-
dictable and deliberate threats pose a far greater risk to
Heroku and their customers. Hacking attempts are not
publicised unless service is interrupted, making it hard
to gauge their frequency.

Hackers are the most prevalent threat agent type and
pose the greatest risk. Infiltrating the platform has the
potential to yield valuable information about customer
applications and their users. Details could include bank-
ing credentials, copyrighted material or prerequisite in-
formation for follow-up attacks.

Heroku also has a good security record and could be seen
as a prize target among hackers. Political content is not
restricted on the platform so controversial sites could also
draw attention [11]. Heroku does however implement
DDoS mitigation techniques and publicises this to deter
hackers [15]. Heroku maintains a public record of all ser-
vice outages, since 2009 the service has been interrupted
by DDoS attacks 3 times totaling 32 hours. No other
types of attack caused outages. [6]

Employees are another threat agent. While customers
operate in sandboxed environments, a disgruntled or in-
competent employee could be extremely damaging. With
greater privileges and system knowledge they represent
a key vulnerability.

2.2.2 Identification of Vulnerabilities
and Exploits

Heroku is under a great deal of scrutiny and while vul-
nerabilities must exist, and are reported on their Hall of
Fame, they appear to be rare. Heroku were effected by
events such Heartblead [8] and continue to be suscepti-
ble to similar bugs. Heroku claim their systems are kept
up-to-date without the need for user interaction [30] -
however, there were disruptions in the production envi-
ronment during Heartblead.

Enabling password resets via email makes customer email
accounts a potential weakness. Heroku has no con-

trol over the security measures at a customers’ email
provider. Gmail session cookies, for example, expire af-
ter two years. Using this weakness, attackers and could
utilise Cross Site Scripting to collect cookies and gain
email access. Social Engineering tactics could also be
employed as in the case of journalist Mat Honan in 2012
[45].

It is clear that customer and employee mistakes repre-
sent a vulnerability. Last year the company introduced
2 factor authentication [9] - this makes attacks on user
accounts more likely to be made using social engineering.
AWS, Heroku’s infrastructure provider, has been subject
to attacks of this type in the past [3].

Please see Figure 1 on page 9 for a threat tree depicting
unauthorised account access.

2.3 Identification of
Existing Countermeasures

2.3.1 Access Control

Authenticated customers manage their applications and
account via the user dashboard. They can perform the
following actions that are potentially destructive.

• Addition and Revocation of SSH keys

• Password Update

• Billing History and Details

• Application Ownership Transfer

• Application Creation, Scaling & Deletion

• Application DNS Configuration

None of these actions require additional validation once
a user has logged in. An application could be scaled to
incur a large bill, transferred to another owner or simply
shutdown - however some actions, such as adding a new
SSH key, do trigger a notification email. Bank details
are not exposed in full but they can be updated.

There are no features in the dashboard that aggregate
customer preferences, even add-ons cannot be sorted by
popularity. When creating a new app you are prevented
from using an existing name. While this does enable cus-
tomers to discover the applications of others, each site is
already public and customers know app URIs are not
secret.

Customers can add collaborators to their applications,

3

these users are able to administer the application with
the exception of adjusting paid add-ons, deleting or
transferring the app and viewing invoices [33]. Heroku is
aware any user communication or aggregation represents
a potential weakness and limits such interactions. This
enables them to offer these important features without
introducing more risk than strictly necessary.

At a Dyno level, within the platform, user processes are
strictly sandboxed. Dynos are deployed using LXC (an
application container implementation) to guarantee iso-
lation, even on a multi-tenant host - which is itself vir-
tualised [38]. While in theory the platform makes such
a precaution possible, the claims are brought into ques-
tion by the recent Digtial Ocean Private Networking flaw
[52].

2.3.2 Identification
& Authentication

Users are authenticated using an email-password combi-
nation and, as of last year, customers are also able to opt-
in to mobile two factor authentication [9]. When using
the Heroku Toolbelt to interact with the platform from
the command line they are able to use ssh or HTTPS.
Each user has a unique email address. Users must cre-
ate their own password after validating they have access
to the supplied email address. Passwords must be 8 or
more characters in length and contain at least two of
the following: case-insensitive letter, number or symbol.
When a user forgets their password they are prompted
to enter their email and are sent a reset link without any
additional checks.

Session cookies are used to identify users. The dash-
board is built using the client-side MVC framework Em-
ber.js [32]. User details are held in a local storage object
which expires after a few hours. The object contains the
authentication method (OAuth 2.0), an access token &
refresh token for the session, token type (Bearer), expiry
information, an obfuscated user id, email address and
a session nonce. Refresh tokens are used by the client
when requesting a new access token [1], nonces are used
to ensure to protection against repeated data submission
and man-in-the-middle attacks [46]. The session cook-
ies must be accepted (Privacy Policy) to use the service
[41].

It would be hard to introduce an additional mandatory
factor, such as the unpopular peripheral authenticator
[48], to the login process without negatively impacting
usability.

2.3.3 Further Countermeasures

Besides the controls surrounding the user dashboard and
applications, Heroku employ a number of further coun-
termeasures to protect the platform as a whole.

Internal Firewalls limit connections within the platform
to a strict set of required ports. Open ports on each
instance are limited to those required to run its ser-
vice. ‘Security Groups’ are used to define classes for the
specific purpose of each instance. Customer database
Dynos, application Dynos and Heroku’s management in-
frastructure all run separate network security groups
[43]. Additional firewalls within network instances re-
strict connections over the virtual network interface to
localhost further isolating customer code and reducing
risk. [37]

While Port Scanning is not automatically blocked it is
prohibited on the platform and either internal or exter-
nal IPs doing so are blacklisted [40]. Packet Sniffing is
also disabled by Dyno hosts, connections between Dynos
on the platform are also encrypted. [42]

All components are kept at the latest patch version. In-
formation about the latest security patches comes from
security assessments, mailing lists and vulnerability re-
porting services. In the event of a new platform vulner-
ability the risk is assessed before being passed to a team
to resolve the issue - patches are validated by the security
team. [43]

External security assessments and penetration tests are
also contracted. These focus on the OWASP vulner-
abilities and ensuring isolation is correctly enforced.
The assessments cover all components of the platform.
[43]

Heroku caries out background checks on all new employ-
ees [35]. AWS employees are granted data center ac-
cess per-project, access is immediately revoked when the
project finishes.

AWS data centers have fire detection and suppression, an
uninterruptible power supply and are closely monitored
for hardware defects [36]. They are also ISO 27001 and
FISMA certified. [39]

Customer application data is regularly backed up. Back-
ups are used to automatically redeploy user applications
in the event of an outage. [34]

4

2.3.4 Imagined Countermeasures

A hosting company in control of valuable data and criti-
cal services needs to be transparent about security poli-
cies and countermeasures. However, aside from those
outlined above, the following also likely exist.

The company is likely to have an internal password policy
that details password requirements for staff. Constraints
on required length can be enforced automatically but
ensuring regular resets and password sharing rules re-
quires internal agreement. Creating a corporate culture
that that encourages security awareness and good prac-
tices reduces the probability of a wide range of attack
types.

An employee termination policy also likely been estab-
lished. This will typically involve revoking & resetting
their credentials, recalling equipment and revoking access
to internal discussion areas. This helps limit the damage
of a disgruntled employee and reduces the chance that an
ex-corporate computer is resold without the company’s
knowledge.

It is also probable that there is some form of monitoring
tool built specifically for the Heroku platform. Reso-
lution of threats such as DDoS and hardware failure are
hard to automate entirely. A member of staff is likely ‘on
support’ 24 hours a day to monitor the load and status
of various services. Human supervision of an expressive
monitoring tool reduces the chance of a fault or attack
going unnoticed. While responding to the issue quickly
does not reduce the likelihood, it will help significantly
reduce impact.

Employee contracts will also have a clause that restricts
them from disclosing details of the platform’s architec-
ture and likely applies to employees after the termina-
tion. This acts as a deterrent and gives the company a
legal fallback.

2.4 Determining Risk

This section is documented in the risk matrix and regis-
ter in Appendices 1 and 2 on pages 7 and 8.

2.5 Control Recommendations

In response to the sample outlined in the risk register,
I propose the following controls, ordered by priority, to
better mitigate risk.

The minimum bar for customer authentication is low -
especially given the potential value of a customer’s ap-
plication. A new policy could either prompt or require
customers running high profile sites to enable two fac-
tor authentication. This introduces an additional barrier
for an attacker of higher profile targets. Heroku could
also transfer the risk to an OAuth provider, though they
would loose the option to conditionally enforce restric-
tions such as this that are based on customer types. This
is a lower priority risk but, when it is trivial to determine
a sites’ hosting provider, Heroku must seek to minimise
the impact of becoming a target via a customer. Addi-
tional verification could also be required for destructive
actions.

Limiting knowledge of vulnerabilities within the com-
pany to those implementing a fix reduces the chance of
vulnerability information being leaked. This is a simple
way to minimise these high impact risks.

Heroku could also improve the default level of security
for customer applications by offering SSL as standard.
Other PaaS providers such as Cloudfare provide this fea-
ture at no additional cost.

Heroku might also consider introducing an OWASP ‘vul-
nerability scanner’ to automate detection of common
flaws in their customers applications. This information
could be presented as notifications and provide action-
able feedback and would help avoid bad publicity for an
attack on a customers’ application. Making customers
aware of their security responsibilities is a good way to
increase the security the whole platform. While customer
vulnerabilities have a high likelihood they have limited
impact due to sandboxing.

3 Critique

Risk management needs to be evaluated differently for
applications running on cloud infrastructure. A key
change is that at any given time, the infrastructure in
use by the platform must first be determined. As usage
fluctuates, the system resizes accordingly making it im-
possible to talk about ‘a server’ as a distinct asset.

Instead components of the system must be grouped into
classes of comparable units, as above in the Asset Identi-
fication section. Grouping components like this makes it
possible to generalise - e.g. all Dynos are one point mi-
nor version behind. Targets within the system fall into
a group and the associated risk can still be managed.
Of the risk management process, only the definition of

5

asset need be adjusted, threat agents and vulnerabilities
remain the same.

Assigning qualitative risk in a highly interconnected sys-
tem is likely to fall short when applied in practice.
Rather than a specificity problem I see this as a condi-
tional one, additional connections make calculating the
likeliness and impact of event chains much harder. More
components need to be accounted for making it more
likely something is overlooked or misrepresented.

In a system like that of the Heroku platform, one in a
constant state of flux by design, analysing threat vulner-
ability pairs is made much harder. Making connections
from the threat agent’s point of entry to the target as-
set is often unclear. For example, an attacker could ac-
cess the database of the customer’s application via the
dashboard, ssh, a vulnerability in the platform itself or
via a flaw in the customer’s own site. There comes a
point when the number of interconnected parts makes
it impossible to accurately to calculate the conditional
probabilities for vulnerability likeliness.

There are a number of problems in applying risk man-
agement to such a system. The complexity introduced
by having different companies running parts of the sys-
tem makes the risk evaluation much harder. I see it

as three parties, Heroku, its customers and the infras-
tructure provider. In a system like this where each, in
terms of communication, are (relatively) disconnected, it
becomes a case of working to best limit their own risk
in their part of the system. This makes traditional ex-
haustive risk management techniques harder to apply.
[2]

Risk management is also based on valuing the system’s
assets. In a traditional system this was done by looking
at networked devices and aggregating replacement and
data loss costs. On a cloud system where a physical ma-
chine is running many servers, of which the value of each
is unknown, asset evaluation becomes impossible. There
is also the residual issue of attempting to quantify the
cost of lost opportunity. Replacing hardware or spawn-
ing another instance is cheap, estimating the value of the
work lost by downtime on systems is very challenging to
do accurately. [53]

However, I think that the risk management still brings
value to a cloud PaaS provider. It opens up the discus-
sion about risks, helps educate employees, and in turn
customers about threat agents and common vulnerabil-
ities. Better security awareness greatly benefits Heroku
and is likely the most effective means the company has to
improve the security of their platform as a whole.

6

4 Appendix 1. Risk Matrix

Threat vulnerability pairs:

1. Terminated Employees - Un-patched Vulnerability

2. Digruntled Employee - Avoidable Logging System

3. Hardware Failure - Incomplete Backup

4. Terminated Employees - Un-revoked Credentials

5. Controversial Customer Site - Poor Account Security

Impact
Very Low Low Medium High Very High

Very High
High 1
Medium 4 2
Low 3 5

Likelihood

Very Low

Table 1: Risk Matrix

5 Appendix 2. Risk Register

Table 2: Risk Register

Threat Pairs Current Risk Residual Risk

Vulnerability
Threat
Source

Likelihood Impact
Risk

Estimation
Mitigation
Stratgy

Likelihood Impact
Risk

Estimation

Terminated
Employee

Un-patched
Vulnerability

When an employee is
let go often there is

some resentment. With
fewer than 200 employees

and regular patches
being made to the
platform it is likely

terminated employees have
knowledge of platform

vulnerabilities.

Dependent on the
specifics of the

known vulnerability,
potentially high.

High

Reduce knowledge
and access
of exiting
employees.

Reduced Equal Medium

Disgruntled
Employee

Avoidable
Logging

While logging is extensive,
a technical employee

is likely to know a means
to disable it while

acting as an attacker.

Potentially very high High

Employee background
checks, monitor
job satisfaction,
ensure logging
is complete.

Reduced Equal Medium

Hardware
Failure

Incomplete
Backup

Regular backups are
taken but in the

event of (an unlikely)
sudden hardware

failure it is likely the
latest data will still be lost.

Medium, recent
data loss may

be unacceptable for
some customers.

Low

Run applications in
new data centers

in sensible locations,
reduce backup delay.

Equal Equal Low

Terminated
Employee

Un-revoked
Credentials

Possible credentials
of terminated

employees may not
be revoked immediately.

High
(as above)

Medium

Enforce policy
to immediately
revoke access,
even before
termination.

Reduced Equal Low

Controversial
Customer

Poor Account
Security

Controversial customers
that are known

users of the platform
open the potential

for targeted attacks.
This is less likely.

DDoS attacks still
have a high impact

on the platform.
Medium

Guard knowledge
of company IP

ranges and
current customers.

Reduced Equal Low

8

6 Appendix 3. Threat Tree

Unauthorised Customer
Account Access

P:NSE:C

Steal
Password

P:SE:E

Shoulder
Surf

I:NSE:C

Install
Keylogger

P:SE:E

Find
Note

I:NSE:C

Reset
Password

P:NSE:C

Access
Email
P:NSE:E

Get Email
Password

P:NSE:E

Use Signed
in Device

I:NSE:C

Call
Support
P:NSE:C

Answer
Questions

P:NSE:C

Billing
Knowledge

P:NSE:E

Bribe
P:NSE:E

Contact
at Heroku

P:NSE:E

Steal
SSH Key

P:NSE:C

Access
Computer

P:NSE:C

Successful
Login
P:NSE:C

Know
Password

P:NSE:C

Find
Password

P:NSE:?

Blackmail
P:NSE:?

Threat
P:NSE:?

Ransom
P:NSE:E

Guess
Password

P:NSE:C

Brute
Force
P:SE:SE

Dictionary
Attack
P:SE:E

Heuristic
P:SE:E

Duplicated
Password

P:NSE:C

Key
Possible (P) or Impossible (I)

(SE) or No (NSE) Special Equipment
Cheap (C) or Expensive (E)

Figure 1: User Account Access Threat Tree

7 Appendix 4. System Architecture

Figure 2: Architecture of the Heroku Platform

Bibliography

[1] Auth0. Refresh tokens. https://auth0.com/docs/refresh-token, 2015.

[2] P. Brodzinski. Top 6 problems with risk management, point 2. http://brodzinski.com/2006/11/

top-6-problems-with-risk-management.html, 2006.

[3] J. Bryant. How i almost lost my $500,000 twitter username. http://hackticool.com/post/75171875746, 2014.

[4] BuiltWith. Heroku usage statistics. https://trends.builtwith.com/hosting/Heroku, 2015.

[5] Crunchbase. Heroku profile. https://www.crunchbase.com/organization/heroku#/entity, 2015.

[6] C. Egan. Heroku outage analysis. http://charlieegan3.com/blog/2015/10/15/heroku-outage-analysis.html, 2015.

[7] A. Ely. Adam ely: Summary. https://www.linkedin.com/in/adamely#summary, 2015.

[8] Heroku. Openssl heartbleed security issue, incident 606. https://status.heroku.com/incidents/606, 2014.

[9] Heroku. Two-factor authentication now generally available. https://blog.heroku.com/archives/2014/9/25/

two-factor-authentication-ga, 2014.

[10] Heroku. About. https://www.heroku.com/what, 2015.

[11] Heroku. Acceptable use policy. https://www.heroku.com/policy/aup, 2015.

[12] Heroku. Adding keys to heroku. https://devcenter.heroku.com/articles/keys#adding-keys-to-heroku, 2015.

[13] Heroku. Build packs. https://devcenter.heroku.com/articles/buildpacks, 2015.

[14] Heroku. Customers. https://www.heroku.com/customers, 2015.

[15] Heroku. Ddos. https://www.heroku.com/policy/security#ddos, 2015.

[16] Heroku. Dyno types. https://devcenter.heroku.com/articles/dyno-types#setting-dyno-type, 2015.

[17] Heroku. Heroku incident log. https://status.heroku.com/past, 2015.

[18] Heroku. Heroku platform languages. https://devcenter.heroku.com/start, 2015.

[19] Heroku. Heroku uptime. https://status.heroku.com/uptime, 2015.

[20] Heroku. Http caching. https://devcenter.heroku.com/articles/http-caching, 2015.

[21] Heroku. Http routing. https://devcenter.heroku.com/articles/http-routing, 2015.

[22] Heroku. Incident 689. https://status.heroku.com/incidents/689, 2015.

[23] Heroku. Incident 773. https://status.heroku.com/incidents/773, 2015.

[24] Heroku. Network security. https://www.heroku.com/policy/security#netsec, 2015.

[25] Heroku. Pci. https://www.heroku.com/policy/security#pci, 2015.

[26] Heroku. Physical backups on heroku postgres. https://devcenter.heroku.com/articles/

heroku-postgres-data-safety-and-continuous-protection#physical-backups-on-heroku-postgres, 2015.

[27] Heroku. Security researcher hall of fame. https://www.heroku.com/policy/security-hall-of-fame, 2015.

[28] Heroku. Security staff. https://www.heroku.com/policy/security#security_staff, 2015.

[29] Heroku. Slug compiler. https://devcenter.heroku.com/articles/slug-compiler, 2015.

[30] Heroku. System configuration. https://www.heroku.com/policy/security#system_configuration, 2015.

[31] Heroku. Vunerability report. https://www.heroku.com/policy/security#vuln_report, 2015.

[32] Heroku2. New heroku dashboard. https://blog.heroku.com/archives/2014/8/5/new-dashboard-and-metrics-beta#

new-heroku-dashboard, 2014.

[33] Heroku2. Collaborator privileges. https://devcenter.heroku.com/articles/sharing#collaborator-privileges, 2015.

[34] Heroku2. Disater recovery: Customer applications and databases. https://www.heroku.com/policy/security#dr_customer_apps,

2015.

11

[35] Heroku2. Employee screening. https://www.heroku.com/policy/security#employee_screening, 2015.

[36] Heroku2. Environment safeguards. https://www.heroku.com/policy/security#environment, 2015.

[37] Heroku2. Firewalls. https://www.heroku.com/policy/security#firewalls, 2015.

[38] Heroku2. Isolation and security. https://devcenter.heroku.com/articles/dynos#isolation-and-security, 2015.

[39] Heroku2. Physical security. https://www.heroku.com/policy/security#physsec, 2015.

[40] Heroku2. Port scanning. https://www.heroku.com/policy/security#portscan, 2015.

[41] Heroku2. Privacy policy. https://www.heroku.com/policy/privacy, 2015.

[42] Heroku2. Spoofing. https://www.heroku.com/policy/security#spoofing, 2015.

[43] Heroku2. Vulnerability management. https://www.heroku.com/policy/security#vuln_management, 2015.

[44] T. Hoff. Heroku - simultaneously develop and deploy automatically scalable rails applications in the cloud. http://highscalability.

com/heroku-simultaneously-develop-and-deploy-automatically-scalable-rails-applications-cloud, 2009.

[45] M. Honan. How apple and amazon security flaws led to my epic hacking. http://www.wired.com/2012/08/

apple-amazon-mat-honan-hacking/, 2012.

[46] B. Lakshmi. When to use nonce? - security stack exchange. http://security.stackexchange.com/a/19834, 2012.

[47] legislation.gov. Data protection act. http://www.legislation.gov.uk/ukpga/1998/29/section/13, 1998.

[48] R. Murray-West. Facebook campaign by angry hsbc customers over new online security key. http://www.telegraph.co.uk/finance/

personalfinance/bank-accounts/8725302/Facebook-campaign-by-angry-HSBC-customers-over-new-online-security-key.

html, 2011.

[49] T. Rautonen. Introduction to paas and heroku, slide 11. http://www.slideshare.net/trautonen/paas-heroku, 2015.

[50] Salesforce. Heroku security, privacy and architecture. https://help.salesforce.com/servlet/servlet.FileDownload?file=

015300000037zDoAAI, 2015.

[51] Splunk. Heroku selects splunk. http://www.splunk.com/view/SP-CAAAFP4, 2010.

[52] J. Stanley. Digital ocean private networking is not private. http://incoherency.co.uk/blog/stories/

digital-ocean-private-network.html, 2015.

[53] R. Stiennon. Why risk management fails in it. http://www.networkworld.com/article/2160724/tech-primers/

why-risk-management-fails-in-it.html, 2012.

12

